Android中invalidate过程详解
invalidate()
函数的主要作用是请求View树进行重绘,该函数可以由应用程序调用,或者由系统函数间接调用,例如setEnable()
, setSelected()
, setVisiblity()
都会间接调用到invalidate()
来请求View树重绘,更新View树的显示。
注:requestLayout()
和requestFocus()
函数也会引起视图重绘
下面我们通过源码来了解invalidate()函数的工作原理,首先我们来看View类中invalidate()的实现过程:
/**
* Invalidate the whole view. If the view is visible,
* {@link #onDraw(android.graphics.Canvas)} will be called at some point in
* the future. This must be called from a UI thread. To call from a non-UI thread,
* call {@link #postInvalidate()}.
*/
public void invalidate() {
invalidate(true);
}
invalidate()
函数会转而调用invalidate(true)
,继续往下看:
/**
* This is where the invalidate() work actually happens. A full invalidate()
* causes the drawing cache to be invalidated, but this function can be called with
* invalidateCache set to false to skip that invalidation step for cases that do not
* need it (for example, a component that remains at the same dimensions with the same
* content).
*
* @param invalidateCache Whether the drawing cache for this view should be invalidated as
* well. This is usually true for a full invalidate, but may be set to false if the
* View's contents or dimensions have not changed.
*/
void invalidate(boolean invalidateCache) {
if (ViewDebug.TRACE_HIERARCHY) {
ViewDebug.trace(this, ViewDebug.HierarchyTraceType.INVALIDATE);
}
if (skipInvalidate()) {
return;
}
if ((mPrivateFlags & (DRAWN | HAS_BOUNDS)) == (DRAWN | HAS_BOUNDS) ||
(invalidateCache && (mPrivateFlags & DRAWING_CACHE_VALID) == DRAWING_CACHE_VALID) ||
(mPrivateFlags & INVALIDATED) != INVALIDATED || isOpaque() != mLastIsOpaque) {
mLastIsOpaque = isOpaque();
mPrivateFlags &= ~DRAWN;
mPrivateFlags |= DIRTY;
if (invalidateCache) {
mPrivateFlags |= INVALIDATED;
mPrivateFlags &= ~DRAWING_CACHE_VALID;
}
final AttachInfo ai = mAttachInfo;
final ViewParent p = mParent;
//noinspection PointlessBooleanExpression,ConstantConditions
if (!HardwareRenderer.RENDER_DIRTY_REGIONS) {
if (p != null && ai != null && ai.mHardwareAccelerated) {
// fast-track for GL-enabled applications; just invalidate the whole hierarchy
// with a null dirty rect, which tells the ViewAncestor to redraw everything
p.invalidateChild(this, null);
return;
}
}
if (p != null && ai != null) {
final Rect r = ai.mTmpInvalRect;
r.set(0, 0, mRight - mLeft, mBottom - mTop);
// Don't call invalidate -- we don't want to internally scroll
// our own bounds
p.invalidateChild(this, r);
}
}
}
下面我们来具体进行分析invalidate(true)
函数的执行流程:
- 首先调用
skipInvalidate()
,该函数主要判断该View是否不需要重绘,如果不许要重绘则直接返回,不需要重绘的条件是该View不可见并且未进行动画 - 接下来的if语句是来进一步判断View是否需要绘制,其中表达式
(mPrivateFlags & (DRAWN | HAS_BOUNDS)) == (DRAWN | HAS_BOUNDS)
的意思指的是如果View需要重绘并且其大小不为0,其余几个本人也未完全理解,还望高手指点~~如果需要重绘,则处理相关标志位 - 对于开启硬件加速的应用程序,则调用父视图的
invalidateChild
函数绘制整个区域,否则只绘制dirty区域(r变量所指的区域),这是一个向上回溯的过程,每一层的父View都将自己的显示区域与传入的刷新Rect做交集。
接下来看invalidateChild()
的 实现过程:
public final void invalidateChild(View child, final Rect dirty) {
if (ViewDebug.TRACE_HIERARCHY) {
ViewDebug.trace(this, ViewDebug.HierarchyTraceType.INVALIDATE_CHILD);
}
ViewParent parent = this;
final AttachInfo attachInfo = mAttachInfo;
if (attachInfo != null) {
// If the child is drawing an animation, we want to copy this flag onto
// ourselves and the parent to make sure the invalidate request goes
// through
final boolean drawAnimation = (child.mPrivateFlags & DRAW_ANIMATION) == DRAW_ANIMATION;
if (dirty == null) {
if (child.mLayerType != LAYER_TYPE_NONE) {
mPrivateFlags |= INVALIDATED;
mPrivateFlags &= ~DRAWING_CACHE_VALID;
child.mLocalDirtyRect.setEmpty();
}
do {
View view = null;
if (parent instanceof View) {
view = (View) parent;
if (view.mLayerType != LAYER_TYPE_NONE) {
view.mLocalDirtyRect.setEmpty();
if (view.getParent() instanceof View) {
final View grandParent = (View) view.getParent();
grandParent.mPrivateFlags |= INVALIDATED;
grandParent.mPrivateFlags &= ~DRAWING_CACHE_VALID;
}
}
if ((view.mPrivateFlags & DIRTY_MASK) != 0) {
// already marked dirty - we're done
break;
}
}
if (drawAnimation) {
if (view != null) {
view.mPrivateFlags |= DRAW_ANIMATION;
} else if (parent instanceof ViewRootImpl) {
((ViewRootImpl) parent).mIsAnimating = true;
}
}
if (parent instanceof ViewRootImpl) {
((ViewRootImpl) parent).invalidate();
parent = null;
} else if (view != null) {
if ((view.mPrivateFlags & DRAWN) == DRAWN ||
(view.mPrivateFlags & DRAWING_CACHE_VALID) == DRAWING_CACHE_VALID) {
view.mPrivateFlags &= ~DRAWING_CACHE_VALID;
view.mPrivateFlags |= DIRTY;
parent = view.mParent;
} else {
parent = null;
}
}
} while (parent != null);
} else {
// Check whether the child that requests the invalidate is fully opaque
final boolean isOpaque = child.isOpaque() && !drawAnimation &&
child.getAnimation() == null;
// Mark the child as dirty, using the appropriate flag
// Make sure we do not set both flags at the same time
int opaqueFlag = isOpaque ? DIRTY_OPAQUE : DIRTY;
if (child.mLayerType != LAYER_TYPE_NONE) {
mPrivateFlags |= INVALIDATED;
mPrivateFlags &= ~DRAWING_CACHE_VALID;
child.mLocalDirtyRect.union(dirty);
}
final int[] location = attachInfo.mInvalidateChildLocation;
location[CHILD_LEFT_INDEX] = child.mLeft;
location[CHILD_TOP_INDEX] = child.mTop;
Matrix childMatrix = child.getMatrix();
if (!childMatrix.isIdentity()) {
RectF boundingRect = attachInfo.mTmpTransformRect;
boundingRect.set(dirty);
//boundingRect.inset(-0.5f, -0.5f);
childMatrix.mapRect(boundingRect);
dirty.set((int) (boundingRect.left - 0.5f),
(int) (boundingRect.top - 0.5f),
(int) (boundingRect.right + 0.5f),
(int) (boundingRect.bottom + 0.5f));
}
do {
View view = null;
if (parent instanceof View) {
view = (View) parent;
if (view.mLayerType != LAYER_TYPE_NONE &&
view.getParent() instanceof View) {
final View grandParent = (View) view.getParent();
grandParent.mPrivateFlags |= INVALIDATED;
grandParent.mPrivateFlags &= ~DRAWING_CACHE_VALID;
}
}
if (drawAnimation) {
if (view != null) {
view.mPrivateFlags |= DRAW_ANIMATION;
} else if (parent instanceof ViewRootImpl) {
((ViewRootImpl) parent).mIsAnimating = true;
}
}
// If the parent is dirty opaque or not dirty, mark it dirty with the opaque
// flag coming from the child that initiated the invalidate
if (view != null) {
if ((view.mViewFlags & FADING_EDGE_MASK) != 0 &&
view.getSolidColor() == 0) {
opaqueFlag = DIRTY;
}
if ((view.mPrivateFlags & DIRTY_MASK) != DIRTY) {
view.mPrivateFlags = (view.mPrivateFlags & ~DIRTY_MASK) | opaqueFlag;
}
}
parent = parent.invalidateChildInParent(location, dirty);
if (view != null) {
// Account for transform on current parent
Matrix m = view.getMatrix();
if (!m.isIdentity()) {
RectF boundingRect = attachInfo.mTmpTransformRect;
boundingRect.set(dirty);
m.mapRect(boundingRect);
dirty.set((int) boundingRect.left, (int) boundingRect.top,
(int) (boundingRect.right + 0.5f),
(int) (boundingRect.bottom + 0.5f));
}
}
} while (parent != null);
}
}
}
大概流程如下,我们主要关注dirty区域不是null(非硬件加速)的情况:
- 判断子视图是否是不透明的(不透明的条件是
isOpaque()
返回true
,视图未进行动画以及child.getAnimation() == null)
,并将判断结果保存到变量isOpaque
中,如果不透明则将变量opaqueFlag
设置为DIRTY_OPAQUE
,否则设置为DIRTY
。 - 定义
location
保存子视图的左上角坐标 - 如果子视图正在动画,那么父视图也要添加动画标志,如果父视图是
ViewGroup
,那么给mPrivateFlags
添加DRAW_ANIMATION
标识,如果父视图是ViewRoot
,则给其内部变量mIsAnimating
赋值为true
- 设置
dirty
标识,如果子视图是不透明的,则父视图设置为DIRTY_OPAQUE
,否则设置为DIRTY
- 调用
parent.invalidateChildInparent()
,这里的parent
有可能是ViewGroup
,也有可能是ViewRoot
(最后一次while
循环),首先来看ViewGroup
,ViewGroup
中该函数的主要作用是对dirty区域进行计算
以上过程的主体是一个do{}while{}
循环,不断的将子视图的dirty区域与父视图做运算来确定最终要重绘的dirty区域,最终循环到ViewRoot
(ViewRoot
的parent
为null
)为止,并将dirty区域保存到ViewRoot
的mDirty
变量中
/**
* Don't call or override this method. It is used for the implementation of
* the view hierarchy.
*
* This implementation returns null if this ViewGroup does not have a parent,
* if this ViewGroup is already fully invalidated or if the dirty rectangle
* does not intersect with this ViewGroup's bounds.
*/
public ViewParent invalidateChildInParent(final int[] location, final Rect dirty) {
if (ViewDebug.TRACE_HIERARCHY) {
ViewDebug.trace(this, ViewDebug.HierarchyTraceType.INVALIDATE_CHILD_IN_PARENT);
}
if ((mPrivateFlags & DRAWN) == DRAWN ||
(mPrivateFlags & DRAWING_CACHE_VALID) == DRAWING_CACHE_VALID) {
if ((mGroupFlags & (FLAG_OPTIMIZE_INVALIDATE | FLAG_ANIMATION_DONE)) !=
FLAG_OPTIMIZE_INVALIDATE) {
dirty.offset(location[CHILD_LEFT_INDEX] - mScrollX,
location[CHILD_TOP_INDEX] - mScrollY);
final int left = mLeft;
final int top = mTop;
if ((mGroupFlags & FLAG_CLIP_CHILDREN) != FLAG_CLIP_CHILDREN ||
dirty.intersect(0, 0, mRight - left, mBottom - top) ||
(mPrivateFlags & DRAW_ANIMATION) == DRAW_ANIMATION) {
mPrivateFlags &= ~DRAWING_CACHE_VALID;
location[CHILD_LEFT_INDEX] = left;
location[CHILD_TOP_INDEX] = top;
if (mLayerType != LAYER_TYPE_NONE) {
mLocalDirtyRect.union(dirty);
}
return mParent;
}
} else {
mPrivateFlags &= ~DRAWN & ~DRAWING_CACHE_VALID;
location[CHILD_LEFT_INDEX] = mLeft;
location[CHILD_TOP_INDEX] = mTop;
if ((mGroupFlags & FLAG_CLIP_CHILDREN) == FLAG_CLIP_CHILDREN) {
dirty.set(0, 0, mRight - mLeft, mBottom - mTop);
} else {
// in case the dirty rect extends outside the bounds of this container
dirty.union(0, 0, mRight - mLeft, mBottom - mTop);
}
if (mLayerType != LAYER_TYPE_NONE) {
mLocalDirtyRect.union(dirty);
}
return mParent;
}
}
return null;
}
该函数首先调用offset
将子视图的坐标位置转换为在父视图(当前视图)的显示位置,这里主要考虑scroll后导致子视图在父视图中的显示区域会发生变化,接着调用union
函数求得当前视图与子视图的交集,求得的交集必定是小于dirty
的范围,因为子视图的dirty
区域有可能超出其父视图(当前视图)的范围,最后返回当前视图的父视图。
再来看ViewRoot
中invalidateChildInparent
的执行过程:
public ViewParent invalidateChildInParent(final int[] location, final Rect dirty) {
invalidateChild(null, dirty);
return null;
}
该函数仅仅调用了ViewRoot
的invalidateChild
,下面继续看invalidateChild
的源码:
public void invalidateChild(View child, Rect dirty) {
checkThread();
if (DEBUG_DRAW) Log.v(TAG, "Invalidate child: " + dirty);
if (dirty == null) {
// Fast invalidation for GL-enabled applications; GL must redraw everything
invalidate();
return;
}
if (mCurScrollY != 0 || mTranslator != null) {
mTempRect.set(dirty);
dirty = mTempRect;
if (mCurScrollY != 0) {
dirty.offset(0, -mCurScrollY);
}
if (mTranslator != null) {
mTranslator.translateRectInAppWindowToScreen(dirty);
}
if (mAttachInfo.mScalingRequired) {
dirty.inset(-1, -1);
}
}
if (!mDirty.isEmpty() && !mDirty.contains(dirty)) {
mAttachInfo.mSetIgnoreDirtyState = true;
mAttachInfo.mIgnoreDirtyState = true;
}
mDirty.union(dirty);
if (!mWillDrawSoon) {
scheduleTraversals();
}
}
具体分析如下:
- 判断此次调用是否在UI线程中进行
- 将dirty的坐标位置转换为
ViewRoot
的屏幕显示区域 - 更新
mDirty
变量,并调用scheduleTraversals
发起重绘请求
至此一次invalidate()
就结束了。
总结
invalidate
主要给需要重绘的视图添加DIRTY
标记,并通过和父视图的矩形运算求得真正需要绘制的区域,并保存在ViewRoot
中的mDirty
变量中,最后调用scheduleTraversals
发起重绘请求,scheduleTraversals
会发送一个异步消息,最终调用performTraversals()
执行重绘,performTraversals()
的具体过程以后再分析。
以上所有代码基于Android 4.0.4,并结合《Android内核剖析》分析总结而成,源码中涉及到的部分细节本人也未完全理解,还望高手指点~~
blog comments powered by Disqus